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Abstract--An analysis is performed for mixed convective flow through a fluid-saturated porous medium 
adjacent to a vertical surface with the heating condition of power-law variation in the wall temperature. 
The entire mixed convection regime is covered by the single parameter Z = [1 + (Rax/PeO °5]- ~ from the 
pure forced convection limit (X = 1) to the pure free convection limit (X = 0). In modeling the flow through 
porous media, non-Darcy effects such as high-flow-rate inertia forces, no-slip boundary condition, near- 
wall porosit2~ variation and thermal dispersion are taken into consideration. Because of the porosity 
variation in the near wall region, the stagnant thermal conductivity also varies accordingly. The aims of 
the present work are to examine the effects of non-Darcian flow phenomena on mixed convective transport 
and to demonstrate the variation in heat transfer predictions based on different flow models. A finite- 
difference scheme was used to solve the transformed system of equations. Numerical results show that non- 
Darcian and thermal dispersion effects have significant influences on velocity profiles, temperature profiles 

and heat transfer rates from the vertical surface. 

INTRODUCTION 

Transport  processes through porous media play 
important  roles in diverse applications, such as in 
geothermal operations, petroleum industries, thermal 
insulation, design of  solid-matrix heat exchangers, 
chemical catalytic reactors, and many others. The 
study of  convectiw~ heat transfer and fluid flow in 
porous media has :received great attention in recent 
years. Most  of  the earlier studies [1-4] were based on 
Darcy's  law which states that the volume-averaged 
velocity is proport ional  to the pressure gradient. The 
Darcy model  is shown to be valid under the conditions 
of  low velocities anti small porosity [5]. In many prac- 
tical situations the porous medium is bounded by an 
impermeable wall, has higher flow rates, and reveals 
nonuniform porosity distribution in the near wall 
region, making the Darcy's  law inapplicable. To 
model the real physical situation better, it is therefore 
necessary to include the aforementioned non-Darcian 
terms in the analysis of  convective transport in a 
porous medium. Thus, the present study focuses on 

the importance of  non-Darcian effects on fluid flow 
and heat transfer through porous media. 

The inertia effect is expected to be important  at a 
higher flow rate and it can be accounted for through 
the addition of  a velocity-squared term in the momen- 
tum equation, which is known as the Forchheimer 's  
extension. The boundary effect may become sig- 
nificant when heat transfer is considered in a region 
very close to a solid boundary. The Brinkman's  exten- 
sion, which incorporates a viscous shear stress term 
into the momentum equation, together with the no- 
slip boundary condition, is usually used to shed light 
on the importance of  boundary effects. The simul- 
taneous effects of  fluid inertia force and boundary 
viscous resistance upon flow and heat transfer in a 
constant-porosity porous medium were analyzed by 
Vafai and Tien [6] for forced convection and by Ran- 
ganathan and Viskanta [7] for mixed convection. 
F rom their reports, it was found that both boundary 
and inertia effects exhibit a significant influence on 
velocity distribution and heat transfer, especially for 
flows with a larger Reynolds number based on pore 
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NOMENCLATURE 

C inertia coefficient T 
Dad Darcy number based on particle u 

diameter, K~/a 2 ~' 
Da,. local Darcy number, K~/x  2 x 
D~ empirical constant defined in equation ) 

(11) 
d particle diameter 
Fo Forchheimer number, (K~C~/d)(~f/v) 
f dimensionless stream function 
g gravitational constant 
h local heat transfer coefficient 
K permeability cq 
kd stagnant thermal conductivity [J 
ke effective thermal conductivity q 

0 
k~. thermal conductivity of fluid 
k~ thermal conductivity of particles /~ 

Y 
kt thermal dispersion conductivity 
N empirical constant in equation (6) 
Nu~ local Nusselt number, hx/ke P a 
P pressure 
Ped Peclet number based on particle ~b 

diameter rw 
Pe~ local Peclet number, u~x/~f Z 
Pr Prandtl number of the fluid ~9 
qw local surface heat flux 
Ra,. local Rayleigh number, 

gfl( Tw-- T~)K~x/vocf 
Rad Rayleigh number based on particle 

diameter 

temperature 
x-component velocity 
y-component velocity 
streamwise coordinate 
cross-stream coordinate. 

Greek symbols 
~ effective thermal diffusivity of the 

porous medium 
thermal diffusivity of fluid 
thermal expansion coefficient 
pseudo-similarity variable 
dimensionless temperature 
dynamic viscosity 
kinematic viscosity 
boundary effect parameter, Dad/(X/d) 
density of the fluid 

~e/~Jf 
porosity 
local wall shear stress 
nonsimilarity parameter 
stream function. 

Subscripts 
oo quantities away from the wall 
w quantities at the wall. 

size, and thus these effects cannot be ignored. Also, 
detailed accounts ofnon-Darcy effects on natural con- 
vection in a porous cavity have been recently reported 
in Lauriat and Prasad [8, 9]. More recently, Choi and 
Kulacki [10] have investigated the effects of Brinkman 
and Forchheimer terms on mixed convection in a ver- 
tical annulus. In some applications, such as chemical 
catalytic reactors and packed-sphere beds, the 
porosity of the porous medium can no longer be 
deemed a constant. Owing to the variation in packing 
next to the solid wall, the measurements of Benenati 
and Brosilow [11] demonstrated a distinct porosity 
variation with a high-porosity region in the vicinity of 
the solid boundary. This nonuniform porosity dis- 
tribution leads to the occurrence of a maximum vel- 
ocity within the high-porosity region, which is recog- 
nized as the flow-channeling phenomenon [12, 13]. In 
studying the near-wall porosity variation, a simple 
exponential function is usually employed to approxi- 
mate the porosity decay from the solid wall (see, for 
example [12-14]). In addition, the effects of transverse 
thermal dispersion are expected to be more noticeable 
when inertia effects are prevalent, as reported by 
Cheng [15] and Plumb [16]. This dispersive transport 
results from the mixing of local fluid streams as the 
fluid moves past the solid particles. 

Many previous reports are restricted to situations 
in which similarity solutions exist [1-3]. However, the 
flow and thermal fields in mixed convection from sur- 
faces in porous media are nonsimilar in nature. Non- 
similarity solutions for nonsimilar natural and mixed 
convection problems are reported by using the local 
similarity and nonsimilarity methods [17, 18]. Solu- 
tions from these methods are approximate due to the 
neglect of higher order terms in the governing equa- 
tions. A more accurate solution for nonsimilar boun- 
dary layer flows can be obtained by using a finite- 
difference scheme [19], which was employed recently 
by Aldoss et al. [20] and Hsieh et al. [21] to solve the 
problems of mixed convection along nonisothermal 
horizontal and vertical surfaces within Darcy porous 
media. However, the non-Darcian flow phenomena 
often involved in porous media are neglected in their 
analyses. 

The objective of the present work is to investigate 
numerically the influence of non-Darcian terms on 
mixed convection heat transfer along a vertical surface 
embedded in a porous medium, under the condition 
of variable wall temperature in the form 
T, (x )  = T ~ + a x  ~. A single nonsimilarity parameter 
Z = [1 +(Rax/Pex) °5] ~, which varies from one for 
pure forced convection to zero for pure free convec- 
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tion, is introduced to cover the entire mixed con- 
vection regime. The Darcy-Forchheimer-Brinkman 
flow model [6], with a variable porosity distribution, 
is employed to represent momentum transport of the 
convective fluid. The variation of porosity in the vicinity 
of the solid boundary is approximated by an 
exponential functio~a. In addition, the effects of trans- 
verse thermal dispe.rsion are included in the energy 
equation, along with a variable stagnant conductivity. 
Numerical solutiorLs for the governing differential 
equations are generated by an efficient finite-difference 
algorithm. The importance of the non-Darcian terms 
will be illustrated by comparing results based on the 
non-Darcy model with those ofa  Darcy flow. Results 
of major interest, such as temperature profiles, vel- 
ocity profiles, and the local Nusselt number, are pre- 
sented for some representative exponential values of 
the power-law wall temperature variation. 

ANALYSIS 

Consider the problem of mixed convection along 
an impermeable vertical plate embedded in a fluid- 
saturated porous medium. The vertical plate is 
assumed to be heated in such a way that its surface 
temperature varies in the power-law form, 
Tw(X) = T~ +ax", where a is a constant and n is the 
exponent. The streamwise coordinate is denoted by x, 
and that normal to it is denoted by y. The gravitational 
acceleration g is acting downward in the direction 
opposite to the x coordinate. In the formulation of 
the present problem the following common assump- 
tions are made : the l]ow is steady, incompressible and 
two-dimensional (2D) ; and the convective fluid and 
the porous matrix are everywhere in local thermo- 
dynamic equilibrium. Under these assumptions and 
the application of the Boussinesq and boundary-layer 
approximations, the governing conservation equa- 
tions, with momentum equation based on the Darcy- 
Forchheimer-Brinkman model, can be written as [6] 

t?u t?v 
eS + = o (1) 

02u 
P 2 ~P #~y2+pgf l (T-To~)  (2) ~;u + pCu = ax + 

u +VTy =Oyt Oy] (3) 

In the above equatic,ns, u and v are the velocity com- 
ponents along the x ;and y directions ; T and P are the 
temperature and pressure ; p, ~ and fl are the density, 
dynamic viscosity and thermal expansion coefficient 
of the fluid ; K, C and q5 are the permeability, inertia 
force parameter and porosity of the porous medium ; 
and ~ = kJ(pc) is the effective thermal diffusivity of 
the porous medium, with ko denoting the effective 
thermal conductivity of the saturated porous medium 
and pc the product of the density and specific heat of 

the fluid. The second term on the left-hand side of the 
momentum equation, equation (2), accounts for an 
additional pressure loss due to the fluid inertia force, 
while the second term on its right-hand side represents 
the viscous shear force in the boundary layer. The 
appropriate boundary conditions for the problem are 

u = v = 0  T =  T w ( x ) = T o + a x "  at y = 0  (4) 

u~uo~ T--*T~ as y--,ov. (5) 

It is noted that n = 0 corresponds to the case of an 
isothermal plate. 

In order to examine the nonuniform porosity 
effects, an exponential decrease is presumed to 
account for the functional dependence of porosity on 
the distance y from the wall, as was used in several 
published reports [12-14] : 

dp = dp~+(Cfw-dpoo)exp(-Ny/d) (6) 

where q~ is the free-stream porosity, qSw is the porosity 
at wall, and N is an experimental parameter which 
depends on the packing of particles next to the solid 
wall. Measurements show that the porosity of a 
packed-sphere bed decreases from a value of 0.8-1.0 
at the wall to 0.364).4 in the bulk of the bed [11, 22]. 
The porosity oscillates around the free-stream value 
with the oscillations damped out at about 4.5-5 par- 
ticle diameters from the wall. The constants q~ and 
q~w chosen in a recent paper [23] are ~boo = 0.4, 
qSw = 0.9. A sharp exponential decrease, N = 6, is used 
to reflect the rapid porosity change near the wall [24]. 
Note that the oscillations of porosity, which are con- 
sidered to be secondary, are neglected in the present 
analysis. Both permeability K and inertia coefficient 
C of the porous matrix depend on the porosity and 
particle diameter and can be determined from the 
widely-known correlations proposed by Ergun [25] 

d2q53 
K - (7) 

1 5 o ( 1 - &  

1.75(1 - ~ )  
c - (8) 

d~ 3 

where d is the particle diameter. It can be seen that 
the permeability and inertia coefficient will vary with 
porosity decay from the wall. 

Thermal dispersion effects are anticipated to be sig- 
nificant when inertia effects are prevalent. It is well 
known that the effective thermal conductivity ke of a 
saturated porous medium can be expressed as a sum 
of the stagnant thermal conductivity kd (due to molec- 
ular diffusion) and the thermal dispersion con- 
ductivity kt (due to mechanical dissipation) ; in other 
words, 

ke = kd + kt. (9) 

The stagnant thermal conductivity of the porous 
medium can be computed from the following semi- 
analytical expression [26] 
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kd _ [1 -- x/(1 -- ~b)] + 2~(-1 - 40 
kf 2B 

[ ( 1 - 2 ) B l n { l ' ~  B + I  B - - l ]  
x L ~  5 \~-Bj 2 1-~17 (10) 

where B = 1.25[(1 - ~b)/q$] ~°/9 and 2 = kf/k~ is the ratio 
of the thermal conductivity of fluid phase to that of 
solid phase. Equation (10) reveals that the stagnant 
thermal conductivity is a function of position for a 
nonuniform porosity medium. As proposed by Hsu 
and Cheng [27], the thermal dispersion conductivity 
can be given in the form 

k t 1 - d? ud 
Dt (11) 

kr q~2 ~f 

w h e r e  D t is an empirical contant and ~f is the thermal 
diffusivity of the fluid. 

To facilitate the present analysis, the system of 
equations (2)-(5) will be transformed into a dimen- 
sionless form by introducing 

## =Y--Pe°SZ-' Z = [14"(Ra~/Pe;<)°5] -~ (12) 
X 

f ( z ,  q) = ~(x,Y)Z/(~f ee°'5) 

0 = ( T - T ~ ) / ( T w - T ~ )  (13) 

where the stream function ~k satisfies the continuity 
equation, equation (1), with u = &l//Oy and 
v = - 0~/0x ; Pex = u~x/~fis the local Peclet number ; 
Rax = g f l (Tw-  T~)K~x/v~f is the local Rayleigh num- 
ber; and Z is the nonsimilarity mixed convection 
parameter. 

Substituting equations (12) and (13) into equations 
(2)-(5), we have the following set of non-dimensional 
equations : 

I- /x\°-5"-I 2 J ° fan 
(xh0"T(c/(0A  

- F ° [ P e ° S  4"Ra°skdJ A \ C ~ J k &  

- ~ + ( I + F o P e d ) z 2 + ( I - - z ) 2 0 = O  (14) 

020 - n ~ O  aOr#2-- + {½[1 +n(1 - z ) ] f +  ffqqJ~da~aO Of 

" I--/000f Of O0"] ]z(1 -z)ka. oz 0, az) (15) 

~ ( z ,  o) = 0 

of 
[1 4- n(l -- z ) ] f (z ,  O) -- nz(1 -- Z) ~ (Z, O) = 0 

0(X,0) = I (16) 

~ ( Z ,  oo) = Z 2, O(z , Go) = (17) 0 

where Fo = (Ko~C~/d)(~f/v) is the Forchheimer num- 
ber; ¢ ( x ) =  Dad/(x/d) is the boundary effect par- 
ameter with Dad = K~/d2 ; Pea = u~d/ef and Rad = 
Rax[~_a = 9fl(ad')K~,d/vcq are respectively the Peclet 
number and Rayleigh number based on particle dia- 
meter; cr = ~e/~f and K~ and C~ are the permea- 
bility and inertia coefficient in the bulk region. 

The physical quantities of major interest are the 
velocity components u and v, the wall shear stress 
rw(X) and the local heat flux qw(x). Using the dimen- 
sionless variables in equations (12) and (13), u and v 
become 

u = u~z 2f (18) 

v = --u~ee.~°sZ-~ {½[1 4.n(1 ~ ~)  ~ f 

n 0f 
-½[1--n(1--Z)] r / f ' - -  ~Z(1 - Z ) ~ Z  }. (19) 

The local wall shear stress is defined as % ( x ) =  
p(Ou/Oy)y_o, and can be cast into a dimensionless 
form as 

Zw(X2/I.t~O(Pe°S4,ga°5)-3 = f"(Z, 0). (20) 

The most important result to be determined is the heat 
transfer rate from the vertical plate. Consider first the 
local heat flux along the vertical surface, which can be 
computed from q~(x)= -ke(OT/~y)y=o. Results for 
local heat transfer rates from the surface of the vertical 
plate are usually represented in terms of the local 
Nusselt number Nux = hx/ke, where h ( x ) =  qw(X)/ 
[Tw(x) -T~]  is the local heat transfer coefficient. 
The local Nusselt number in terms of the new vari- 
ables is 

Nux(Pe°5+Ra°5)  - '  = - 0 ' ( Z , 0  ) (21) 

The primes in equations (18) (21) denote partial 
differentiations with respect to ft. 

Numerical solutions to equations (14)-(17) were 
obtained on the basis of an efficient finite-difference 
scheme as described by Cebeci and Bradshaw [19]. 
This numerical scheme has several very desirable fea- 
tures that make it appropriate for the solution of 
parabolic partial differential equations. These features 
include a second-order accuracy with arbitrary Z and 
r/ spacings, allowing very rapid Z variations, and 
allowing easy programming of the solution of a large 
number of coupled equations. In the interest of 
brevity, the details of the solution procedure by this 
method are not repeated here. 

RESULTS AND DISCUSSION 

The influence of various non-Darcian flow phenom- 
ena on mixed convection along a nonisothermal ver- 
tical plate in a porous medium is examined and dis- 
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cussed in this section. Following the arguments 
outlined in the previous reports [2, 21], the range 
of the exponent n tor which the present problem is 
physically realistic is 0 ~< n ~< 1. Numerical results 
were obtained for wilues of n within the above range 
and for the following values of physical quantities : 
water at Pr  = 6.95~ u~ = 0.01 m s- ' ,  k~ = 1.05 W 
m - l K  -1 for glass spheres with d = 3 mm. The empiri- 
cal constant Dt was found to be of the order of 10 -2 
[27]. However, since there is still a great deal of contro- 
versy on the thermal dispersion theory [28], this effect 
is considered with D, = 0.01 for the purpose of a quali- 
tative study. Since several non-Darcian flow effects 
will be taken into consideration, the following 
notations are used to stand for different effects 
throughout this study: BIU indicates Boundary, Iner- 
tia and Uniform porosity effects ; nBnlU denotes _no 
Boundary, no Inertia and Uniform porosity effects; 
BIV refers to-Boundary, Inertia, and Variable porosity 
effects, and so on. Ill may be remarked that nBnlU is 
the Darcy flow case and has been reported recently by 
Hsieh et  al. [21 ]. Results for this case from the previous 
study [21] and the present work have been compared 
and are found to be in excellent agreement. 

Typical temperature profiles resulting from differ- 
ent flow models at :~elected values of n are depicted 
for pure free convection 0~ = 0) in Fig. 1, for mixed 
convection (e.g. at X = 0.5) in Fig. 2, and for pure 
forced convection (X = 1) in Fig. 3. In general, boun- 
dary and inertia effects are found to thicken the ther- 
mal boundary layer with a decrease in the wall tem- 
perature gradient. The basic cause of this behavior 
is that the flow inertia force and boundary viscous 
resistance retard the. momentum transport, resulting 
in a reduction in heat transfer. When the boundary, 
inertia, and nonuniform porosity effects are con- 
sidered simultaneously, the temperature gradient at 
wall can be either increased (associated with a 
decrease in the thermal boundary layer thickness) or 
decreased (associated with a thickened thermal 

1 .0  

0 

0.8 
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0 . 0  

X =  0.5 

- - "  n = O . O  
. . . . . . .  n = 0 . 5  
- - - n = l . O  

,BIU 

0 2 4 6 

77 
Fig. 2. Temperature profiles for % = 0.5. 

boundary layer) as compared to the Darcy case, 
depending on the balance between these three effects. 
One also can see from these figures that, for a given 
flow model and at a fixed value of )~, a larger value 
of n gives rise to a larger wall temperature gradient 
associated with a decrease in the thermal boundary 
layer thickness. Thus, a higher value of n indicates a 
higher heat transfer rate from the wall. 

Representative velocity profiles in terms o f f '  are 
illustrated for ~ = 0.5 in Fig. 4. It can be seen that the 
velocity profiles predicted by the non-Darcian models 
(BIV and BIU) differ significantly from those 
obtained by the Darcy's flow model (nBnlU) which 
allows a slip velocity at the solid boundary. We can 
conclude that boundary and inertia effects tend to 
decrease the velocity, while the nonuniform porosity 
effect causes an overshoot of velocity in the region 
very close to the wall. Since fluid inertia and viscous 
shear provide an additional pressure loss in the flow 
field, the velocity is reduced when boundary and iner- 
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\ \~'/0 

2 4 6 8 10 

77 
Fig. 1. Temperature profiles for Z = 0. 
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Fig. 3. Temperature profiles for Z = 1. 
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1 . 5  

f, 

1 . 0  
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X = O , 5  

- -  n : O . O  
- n = 0 . 5  ~ n = l . O  

i I J I 

0 2 4 

-r/ 
Fig. 4. Velocity profiles for X = 0.5. 

tia effects (the BIU model) are considered. The 
channeling profile is readily understood from the 
fact that the porosity in the near-wall region is larger 
than that in the bulk region. Also, as n increases the 
momentum boundary layer thickness decreases for a 
specific flow model. 

Figures 5 and 6 aim to identify the contribution of  
boundary, inertia, and variable porosity effects on the 
local Nusselt number in terms of  N u x ( P e ° 5 +  

1 n B n l U  n - - O , O  / 
~ 1 . o  2 nBIU 

" 4 8tu 
=o.s 5 8,v , ~  

~ 0 . 6  
~ - -  5 

0 . 2  , 

0"00.0 ' 0.12 ' O.14 0.16 : 0.18 ' 1.0 
X 

Fig. 5. Comparison of local Nusselt number for n = 0. 

- - ~  2 . 0  

1 . 6  

n B n l U  
. . . . . .  BIU 

BIV 

o.o i I i I i f i I i 
0.o 0.2 0.4 X 0.6 0.s 1.0 

Fig. 6. Local Nusselt number at selected values of n. 

Ra°5)  -1 . A comparison of  local Nusselt number for 
the case of  constant wall temperature (n = 0) is pre- 
sented in Fig. 5. It is seen that when only the inertia 
effect is considered (the nBIU model), the decrease in 
the local Nusselt number is more pronounced at a 
smaller value of  Z as compared to the Darcy's  flow 
case (the nBnIU model). When boundary effect is also 
considered (the BIU model), the heat transfer rate is 
further reduced just to a slight degree as compared to 
the nBIU case. The present results also show that the 
inclusion of  variable porosity effects (the nBIV and 
BIV models) tends to increase the heat transfer rate. 
It is noted that when different non-Darcian effects are 
considered simultaneously, the heat transfer rate can 
be either increased or decreased depending on the 
interactions among these effects under various con- 
ditions. This is clearly shown in Figs. 5 and 6. Figure 
6 shows the predicted local Nusselt numbers for 
different values of  n. It is clear from this figure that, 
for a given value of  n, the heat transfer rate decreases 
when the Brinkman friction term and the Forchheimer 
inertia term are included (the BIU model). As men- 
tioned above, the flow-channeling effect tends to aug- 
ment the heat transfer from the wall. Also, when all 
three effects are taken into account (the BIV model), 
the competi t ion among these non-Darcian mech- 
anisms determines whether the heat transfer will be 
enhanced or reduced. For  the Darcy flow case, it is 
seen that the local Nusselt number decreases at first, 
reaches a minimum value, and then increases with 
increasing Z. This can be made clear from the nature 
of  the Nux(Pe  °5 + R a  °5) i vs Z plot, which does not  
imply that the actual Nu~ value for mixed convection 
is smaller than that for pure forced convection or  pure 
free convection. In fact, the predicted value of  local 
Nusselt number for mixed convection is higher than 
that for pure forced convection and pure free convec- 
tion, as was demonstrated in [21]. Unlike the Darcy 
flow behavior, the local Nusselt number variations 
with ~ in non-Darcian flow models (BIU and BIV) 
exhibit a continuous increase with increasing Z. Also, 
for a given flow model, the Nusselt number increases 
as n increases. 

The last non-Darcian effect to be examined in the 
analysis is the thermal dispersion, which is expected 
to be more noticeable as the flow inertia becomes 
prevalent. Effects of  thermal dispersion on the local 
Nusselt number are presented for an isothermal ver- 
tical plate (n = 0) in Fig. 7 and for a nonisothermal 
plate with n = 1 in Fig. 8. It can be summarized from 
these two figures that the local Nusselt number 
increases tremendously when the thermal dispersion 
effect is taken into account. This great enhancement 
in heat transfer can be attributed to the dispersive 
transport which brings about a better mixing of  con- 
vective fluid within the pores. 

C O N C L U D I N G  R E M A R K S  

The foregoing study has been conducted to demon- 
strate the importance of  non-Darcy effects on mixed 
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3.0 

~ - -  - -  - BIV 

2.0 

0,0 0.2 0.4 / ~  0.6 0.8 1.0 

Fig. 7. Effects of thermal dispersion on local Nusselt number 
forn =0 .  

convect ion a long a vertical flat plate embedded  in a 
porous  medium for t he case of  power-law var ia t ion  in 
wall temperature.  Effects of  flow inertia, bounda ry  
friction force, and  n o n u n i f o r m  porosi ty are taken into 
account  in the m o m e n t u m  equation.  Owing to the 
near-wall  porosi ty  variat ion,  it is expected tha t  the 
thermal  conduct ivi ty  will vary across the porous  
medium.  Effects of  variable  s tagnant  thermal  con- 
ductivi ty and  transverse thermal  dispersion are t aken  
into cons idera t ion  in the energy equation.  The local 
Nussel t  numbers  are presented for the entire mixed 
convect ion  regime, ranging  f rom pure forced con- 
vection (Z = 1) to pure free convect ion ()~ = 0). It has 
been found tha t  inclusion of  non-Darc i an  effects sig- 
nificantly alters the llow and  heat  t ransfer  character-  
istics f rom those predicted by the t radi t ional  Darcy ' s  
model. Effects of  t~ow inert ia and  bounda ry  fric- 
t ion force with the no-slip bounda ry  condi t ion  tend 
to reduce the velocity and  heat  transfer,  while the flow- 
channel ing  effect, caused by the near-wall  porosi ty  
var iat ion,  enhances  tlhe m o m e n t u m  and  thermal  t rans-  
por ts  in the bounda ry  layer. Whe the r  the heat  t ransfer  
will be increased or decreased as compared  to the 
Darcy  flow depends on  the compet i t ion  between these 
three effects. Finally,  the thermal  dispersion effect is 
found to increase considerably the local Nussel t  
number .  
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Fig. 8. Effects of thermal dispersion on local Nusselt number 
f o r n =  1. 
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